Multi-Objective Evolutionary Optimization of Probabilistic Neural Network

نویسندگان

  • Talitha Rubio
  • Tiantian Zhang
  • Michael Georgiopoulos
چکیده

In this paper the major principles to effectively design a parameter-less, multi-objective evolutionary algorithm that optimizes a population of probabilistic neural network (PNN) classifier models are articulated; PNN is an example of an exemplar-based classifier. These design principles are extracted from experiences, discussed in this paper, which guided the creation of the parameter-less multi-objective evolutionary algorithm, named MO-EPNN (multi-objective evolutionary probabilistic neural network). Furthermore, these design principles are also corroborated by similar principles used for an earlier design of a parameter-less, multi-objective genetic algorithm used to optimize a population of ART (adaptive resonance theory) models, named MO-GART (multi-objective genetically optimized ART); the ART classifier model is another example of an exemplar-based classifier model. MO-EPNN’s performance is compared to other popular classifier models, such as SVM (Support Vector Machines) and CART (Classification and Regression Trees), as well as to an alternate competitive method to genetically optimize the PNN. These comparisons indicate that MO-EPNN’s performance (generalization on unseen data and size) compares favorably to the aforementioned classifier models and to the alternate genetically optimized PNN approach. MO-EPPN’s good performance, and MO-GART’s earlier reported good performance, both of whose design relies on the same principles, gives credence to these design principles, delineated in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Neural Network Based Multi-Objective Evolutionary Optimization of a Heavy-Duty Diesel Engine

In this study the performance and emissions characteristics of a heavy-duty, direct injection, Compression ignition (CI) engine which is specialized in agriculture, have been investigated experimentally. For this aim, the influence of injection timing, load, engine speed on power, brake specific fuel consumption (BSFC), peak pressure (PP), nitrogen oxides (NOx), carbon dioxide (CO2), Carbon mon...

متن کامل

A Method for Pre-Calibration of DI Diesel Engine Emissions and Performance Using Neural Network and Multi-Objective Genetic Algorithm

Diesel engine emission standards are being more stringent as it gains more publicity in industry and transportation. Hence, designers have to suggest new controlling strategies which result in small amounts of emissions and a reasonable fuel economy. To achieve such a target, multi-objective optimization methodology is a good approach inasmuch as several types of ...

متن کامل

Presenting an evolutionary improved algorithm for the multi-objective problem of distribution network reconfiguration in the presence of distributed generation sources and capacitor units with regard to load uncertainty.

Reconfiguration of distribution network feeders is one of the well-known and effective strategies in the distribution network to obtain a new optimal configuration for the distribution feeders by managing the status of switches in the distribution network. This study formulates the multi-objective problem of reconfiguration of a distribution network in the optimal presence of distributed genera...

متن کامل

Estimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran

In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...

متن کامل

Reliability-Based Robust Multi-Objective Optimization of Friction Stir Welding Lap Joint AA1100 Plates

The current paper presents a robust optimum design of friction stir welding (FSW) lap joint AA1100 aluminum alloy sheets using Monte Carlo simulation, NSGA-II and neural network. First, to find the relation between the inputs and outputs a perceptron neural network model was obtained. In this way, results of thirty friction stir welding tests are used for training and testing the neural network...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015